CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives Graphs of the Derivative of a function

What you'll Learn About

- How to graph the derivative from the original function
- How to graph the function from the derivative

The graph of a function is given. Choose the answer that represents the graph of its derivative.
1)

A)

C)

B)

D)

2)

A)

C)

B)

D)

3)

A)

B)

C)

D)

4)

A)

B)

C)

D)

5)

A)

B)

C)

D)

6)

A)

B)

D)

$7 \mid \mathrm{Page}$

$\mathbf{8 | P a g e}$

	p. 107 \#27 Sketch the graph of a continuous function f with $\mathrm{f}(0)=-1$ and $f^{\prime}(x)=\left\{\begin{array}{ll} 1, & \mathrm{x}<-1 \\ -2, & \mathrm{x}>-1 \end{array}\right\}$ The graph of the function $f(x)$ is shown here is made of line segments joined at each end. a. Graph the functions derivative. b. At what values of x between $x=-1$ and $x=4$ is the function not differentiable?

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives Derivatives from a table of values

What you'll Learn About
How to find the derivative at a point given a table of values

2013 BC3
Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C , where t is measured in minutes. Selected values of $\mathrm{C}(\mathrm{t})$, measured in ounces, are given in the table.

$\mathrm{t}($ minute $\mathrm{s})$	0	1	2	3	4	5	6
$\mathrm{C}(\mathrm{t})$ ounces	0	5.3	8.8	11.2	12.8	13.8	14.5

a) Use the data in the table to approximate $C^{\prime}(5.5)$. Show the computations that lead to your answer, and indicate units of measure.

2011 \#2

$\mathrm{t}($ minutes $)$	0	2	5	9	10
$\mathrm{H}(\mathrm{t})$ degrees C	66	60	52	44	43

As a pot of tea cools, the temperature of the tea is modeled by a differentiable function H for $0 \leq t \leq 10$, where time t is measured in minutes and temperature $\mathrm{H}(\mathrm{t})$ is measured in degrees Celsius. Values of $H(t)$ at selected values of time t are shown in the table above

Use the data in the table to approximate the rate at which the temperature of the tea is changing at time $t=9.5$. Show the computations that lead to your answer.

$\underline{2012 \# 1}$					
t (minutes)	0	4	9	15	20
$\mathrm{W}(\mathrm{t})$ degrees F	55.0	57.1	61.8	67.9	71.0

The temperature of water in a tub at time t is modeled by a strictly increasing, twice differentiable function, W, where $W(t)$ is measured in degrees Fahrenheit and t is measured in minutes. At time $t=0$, the temperature of the water is $55^{\circ} \mathrm{F}$. The water is heated for 30 minutes, beginning at time $t=0$. Values of $\mathrm{W}(\mathrm{t})$ at selected times t for the first 20 minutes are given in the table above.
a) Use the data in the table to estimate $W^{\prime}(17.5)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.

$\underline{\underline{2010 ~ \# 2 ~}}$

A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon ($\mathrm{t}=0$) and 8 P.M. $(\mathrm{t}=8)$. The number of entries in the box t hours after noon is modeled by a differentiable function E for $\mathrm{O} \leq t \leq 8$. Values of $\mathrm{E}(\mathrm{T})$, in hundreds of entries, at various times t are shown in the table.

t (hours)	0	2	5	7	8
$\mathrm{E}(\mathrm{t})$ (hundreds of entries)	0	4	13	21	23

b) Use the data in the table to approximate the rate in hundreds of entries per hour, at which entries were being deposited at time $t=7.5$. Show the computations that lead to your answer.

CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.4: Particle Motion pg. 127-140

What you'll Learn About
The derivative represents velocity
The second derivative represents acceleration

13a) Lunar Projectile Motion: A rock thrown vertically upward from the surface of the moon at a velocity of $20 \mathrm{~m} / \mathrm{sec}$ reaches a height of $\mathrm{s}=20 \mathrm{t}-.8 \mathrm{t}^{2}$ in t seconds.
a) Find the rock's velocity and acceleration as functions of time.
b) How long did it take the rock to reach its highest point?
c) When did the rock reach half its maximum height?
d) How long was the rock aloft?

$\mathbf{1 6 | P}$ a g e

$18 \mid P$ a g e

	Particle Motion Summary Given the Velocity $\mathbf{v}(\mathbf{t})$ graph		
	Determine when the particle	Justify/Explain/Give a reason	Where to look on the velocity graph
	Forward/Up/Right	$\mathrm{v}(\mathrm{t})>0$	Above the x -axis
	Backward/Down/Left	$\mathrm{v}(\mathrm{t})<0$	Below the x -axis
	Stopped/At rest	$\mathrm{v}(\mathrm{t})=0$	Touches x -axis
	Changes Direction	$\mathrm{v}(\mathrm{t})=0$ and $\mathrm{v}(\mathrm{t})$ changes sign	Crosses x-axis
	Acceleration Positive	$v^{\prime}(t)>0$	Positive slope/Increasing
	Acceleration Negative	$v^{\prime}(t)<0$	Negative slope/Decreasing
	Acceleration Zero	$v^{\prime}(t)=0$	Zero slope/Constant
	Acceleration Undefined	$\nu^{\prime}(t)$ undefined	Corners/Cusps/Vertical Tangents
	Speed increasing Speeding up	$\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$ have the same sign	Graph moving away from the x -axis
	Speed decreasing	$\mathrm{v}(\mathrm{t})$ and $\mathrm{a}(\mathrm{t})$ have opposite signs	Graph moving toward the x -axis

CALCULUS: Graphical,Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 3: Derivatives 3.7: Implicit Differentiation pg.

What you'll Learn About
How to take the derivative of a function that is not solved for y (an implicitly defined function)

Find the derivative of the following function
A) $\mathrm{x}^{2}+\mathrm{y}^{2}=1$
B) $x=\cos \theta \quad y=\sin \theta$
C) $x^{2}+y^{2}=1$
D) $x^{2}+y^{2}=x y$

$\left.\begin{array}{|l|l|}\hline \text { Getermine the slope of the function at the given value of } x \\ (x+2)^{2}+(y+3)^{2}=25\end{array}\right]$
$\mathbf{2 2 | P a g e}$

	Determine the 2nd derivative of the function defined implicitly
	$2 x^{3}-3 y^{2}=8$
$x^{\frac{1}{3}}-y^{\frac{1}{3}}=1$	

$\mathbf{2 4 | P a g e}$

| 10. | Consider the curve defined by the equation $x^{2}+x y+y^{2}=27$
 a)
 Write an expression for the slope of the curve at any point (x, y). |
| :--- | :--- | :--- | :--- | :--- | :--- |
| b) Find the points on the curve where the lines tangent to the curve | |
| are vertical. | |

$\mathbf{2 5 | P}$ a g e

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives
4.2/4.5: Linearization/Differentials/Mean Value Theorem pg. 196-204

What you'll Learn About
Linearization is another term for tangent line
Differentials are part of the derivative
Mean Value Theorem
a) Find the linearization of the function.
c) Using concavity, determine if the Tangent Line at a is an overestimate or an underestimate. Justify your answer.
2. $f(x)=x^{2}-2 \mathrm{x}+3 \quad \mathrm{a}=2$

1. $f(x)=\sqrt{1+x} \quad \mathrm{a}=0$
$\left.\begin{array}{|l|l|l|}\hline \text { Find dy and evaluate dy for the given value of } x \text { and } d x \\ \text { 20) } y=\frac{2 x}{1+x^{2}} \quad x=-2 \text { and } d x=.1\end{array}\right]$
$\mathbf{2 8 | P}$ a g e
$\left.\begin{array}{|l|llll}\hline & \begin{array}{l}\text { Use the Mean Value Theorem to determine where the slope of the secant } \\ \text { line equals the slope of the tangent line }\end{array} \\ \text { A) } f(x)=x^{2} \quad[2,4]\end{array}\right] \quad[0,1]$

29|Page

CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy Chapter 4: Applications of Derivatives 4.6: Related Rates pg. 246-259

What you'll Learn About
How to use derivatives to solve a problem involving rates
A) Water is draining from a cylindrical tank with radius of 15 cm at $3000 \mathrm{~cm}^{3} /$ second. How fast is the surface dropping?
B) A hot-air balloon rising straight up from a level field is tracked by a range finder 500 ft from the lift-off point. At the moment the range finder's elevation angle is 45°, the angle is increasing at the rate of $.14 \mathrm{rad} / \mathrm{min}$.
How fast is the balloon rising at that moment?

35 | P a g e

CALCULUS: Graphical,Numerical,Algebraic by Finney, Demana, Watts and Kennedy Chapter 8: Applications of Derivatives 8.2: L'Hopitals Rule pg. 444-452

What you'll Learn About:
How to use derivatives to find limits in an indeterminate form

Why L'Hopitals Works
Sketch the graph of two curves with the following characteristic $f(2)=g(2)=0$.
a) Write the tangent line for $f(x)$
b) Write the tangent line for $\mathrm{g}(\mathrm{x})$
c) $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}$
d) $\lim _{x \rightarrow 0} \frac{2 x^{2}}{x^{2}}$
2) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$

$38 \mid \mathrm{Page}$
$39 \mid \mathrm{Page}$

